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Abstract. We perform a detailed investigation of the storage propertics of a model for
neural networks that exhibits the same organization into clusters as Dyson’s hierarchical
model for ferromagnetism, combined with Hebb’s learning algorithm for an exiensive
number of stored patterns p = a /N, where N is the size of the network. In a previous
publication we presented results for the retrieval properties of the model in the case
of finite p, showing that together with the original stored pattern or ‘ancestor’ the
system also retrieves a hierarchy of ‘descendants’. Here we first perform a signal-to-
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its ‘descendants’ that are below the Hopfield value. Afterwards we apply the statistical
mechanics formulation of Amit, Gutfreund and Sempolinsky, to obtain also in this case
a succession of critical storage capacities that are below the corresponding value for
Hopfield's model. In both cases we consider the ratio of the critical storage capacity
for the ‘ancestor’ 1o the same quantity as evaluated in Hopfield’s model, and we prove
rigorously that the signal-to-noise method provides a lower bound for this ratio, that is
bounded from above by unity. We present the phase diagram in the o-T plane for
the particular case of two clusters and one descendant. We observe the existence of
two lines T2 (o) € Tiy () such that at T = T (o) the ‘ancestor’ orders continuously
but for TH{ea) < T < T(a) the global minimum is still given by the spin-glass
phase, while for T < T’(a) the free energy of the retrieved ancestor becomes a global
minimum, just as in Hopfield's model. A new feawure of the model studied here is the
existence of a third line TZ (a) < T2 (a) such that at T = T%(a) the ‘descendant’
orders discontinuously. Thc c:ustcnce of a fourth line T?({a) < T2 (o) depends on the
crnf-nalh of the interaction.

1. Introduction

In a previous publication [1] we presented a neural network model where the neurons,
and not the patterns, were grouped into hierarchical clusters as in Dyson’s model [2]
for ferromagnetism, only the ferromagnetic interactions were here replaced by Hebb’s
learning algorithm. One interesting feature of this model is that, although it bears
some resemblance to Dotsenko’s cluster model [3], it is more tractable and it allows
detailed mathematical investigations. The retrieval properties for a finite number of
stored patterns were discussed in a second paper [4] (in the following, referred to as
1), where we showed that if the number of clusters [ = 27 remains small, < 3, there
is perfect retrieval of a family of ‘descendants’ together with the originally embedded
pattern or ‘ancestor’. The descendants differ from the ancestor in the relative sign
of the cluster overlaps, and they are local minima of the energy while the ancestor
always remains as a global minimum. Introducing as usual a ‘temperature’ T as a
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measure of synaptic noise we obtain that, for a given parttern, the ancestor and its
descendants order succesively by reducing 7. There is a series of critical temperatures
Ty > T3 > -+ > T at which order first the ‘ancestor’ or original pattern and then
the successive ‘descendants’ obtained by increasing the number of partitions in clusters
with different signs for the overlaps. Although the ancestor pairs through a second-
order transition, the other transitions are discontinuous. At and below the ordering
temperature the ancestor solution of the saddle-point equations remains as a global
minimum and the descendants as focal minima of the free energy. The importance
of these local minima is that they may act as attractors in a dynamical relaxation
process. When the number of clusters [ incrcases ‘blurred’ solutions start to appear
that mix the descendants of a given ancestor and may hinder perfect retrieval, the
number of these spuricus solutions increasing exponentially [4] with large values of L.

In the present paper we present a detailed study of the storage capacity of the
model which has an extensive number of stored patterns p = a N, where N is the
size of the network, Although all theories coincide in predicting a critical value o
for the storage capacity such that for & > «_ there is no possible retrieval, the actual
value obtained for c_ varies according to the different criteria used in the definition
of good retrieval. In the signal-to-noise analysis if we make the strong requircment
of perfect retrieval at every site, then o is itself a decreasing function of N. By
using statistical methods [5] we make instead the weaker requirement of having good
retrieval on average. In the case of Hopfield’s model the signal-to-noise analysis gives

N = (2In N)~1 while the work of Amit, Gutfreund and Sompolinsky [5] pives

= 0.14, which coincides with the cstimates obtained previously by Hopfield in
numerical simulations.

This paper is organized as follows. In section 2 we describe the model and
in section 3 we perform a signal-to-noise analysis, obtaining a succession of critical
storage capacities off > of > of™ > ... > o™ for the original pattern and
its ‘descendants’, where the first mequallty mdlcates that all the critical capacities
are below the Hopfield value. In section 4 we perform an analysis of the storage
capacity by using the statistical mechanics techniques introduced by Amit et al [5).
We alse obtain a succession of critical values of; > of > «f > .-, such that for

o > «f, there is no retrieval of the ~ descendant. We showed rigorously for the

original pattern (v = 1) that the ratio of critical capacities o™ /o™ calculated by
the signal-to-noise method is a lower bound for «of/a$;, the same quantity calculated
by statistical mechanics methods. A complete phase diagram in the o-T plane is also
presented in this section, where we show for the particular case of two clusters that
there exist lines Ty (a) and TY(«) such that for a given «v and T' < Tyj(«) orders
the ~ descendant, while for T' < TX(e) < Ty;(o) the free energy of the retrieved

descendant ig lower than the free energy © af the qpm._nlqc\ nhase, The numerical values

A AL wlind

obtained for af agree with the rigorous bounds previously calculated. Section 5 is
dedicated to conclusions and we comment on the relation with stochastic models with
modulated or restricted interaction range. In the appendix we use the linked cluster
theorem to evaluate the average values over the random embedded patterns,

2. The model

We consider a network of N neurons represented by Ising spin variables o, =
+1, ¢ = 1,..., N, where there are stored p patterns {£/}, ¢ = 1,...,p, with
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the independent random variables £/ taking values +£1 with equal probability. The
hierarchical clusters are organized as follows [1, 4]: the N neurons are partitioned in
[ = 2" clustets of N sites each, where r is an integer and we introduce the cluster
overlaps

{a}
1
S'f:mzf?“f a=1,2,...,1 (D

where the sum in equation (1) indicates that the index ¢ runs over the sites in cluster
{a}. To this partition we associate an interaction energy:

IN,
Moy = =57-¢" 2 21841 @

a=1 u

where ¢ is an arbitrary positive coupling.

At the second level every two consecutive clusters are joined into a larger cluster
of 2 N, sites and by continuing this process we have, at the kth level, 27~ clusters
with N, = N2 sites each. To every partition we associate a cluster overlap S¥ (k),
a’ = 1,2,...,2"*% as in equation (1) and an interaction energy M, as in equation (2)
with coupling strength e"~*. The total energy is obtained by adding the H, from
k= 0to k = r, with the result that

IN, o
H=-"03 A Sis) (3a)
a.b I
which can also be written as
Jd e} {b_l
H==3" A Y Jyjoo, (3b)
~ ak i
where the J;; are given by Hebb’s learning rule:
1 )
J; = ﬁ%:fflf;-- 4

The coefficients A,,({) are the elements of a [ x ! matrix A that turns out to
be of ultrametric form. The explicit expression for A({) and the eigenvectors v7(!)
were discussed in I where we showed the following properties:

(i) They can be obtained through the recursion relations

29— o"(l/2
4]

e K73 KRR R

with the corresponding eigenvalues
M =14 er(1/2)
Aa(l) = €Ay (1/2) (6)
Dy = A (D= X, (1/2) M2

©)

b
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It follows that v} = +1.

(ii) Except for v'({) and v*(!), all the other eigenvectors fall into degenerate
groups with decreasing eigenvalues:

A2 > A=A > A0 T A= = AL )

We may write the energy in an alternative way

2
LNy zzx [z " %‘] ®

and it follows that, for each embedded pattern, the energy function will be minimized
by { configurations of overlaps that satisfy:

sgn(S4) = v) +=1,2,....L )

It is interesting to point out that in the form of equation (8) the energy function is
reminiscent of some ‘palimpsestic’ schemes formulated to store working or short-term
memories [6]. The learning rule of [6] is obtained from equation (8) if we make the
correspondence

p=1 [=aN (&v))iea = 1) 7] = %1 (10)

and let A, be some positive, integrable function of v that would play the role of a
‘time’. The analogy stops there, but some of our equations can be compared with
those in [6] with the correspondence in equation (10).

Dyson’s hierarchical model is obtained by writing J;; = 1, Ny = 2, r =
In(N)/In(2) and it simulates decaying power law interactions |i — j{~(1*) with
the range parameter ¢ = In(e)/1n(2), then the limit of long- (short-)-range interac-
tions corresponds to € — 0 (e — oo). We analyse these two limits.

When ¢ = 0 the present model reduces to Hopfield’s model with long-range,
uniform interactions. In this limit only the largest cigenvalue A, = ! differs from
zero in equation (6) and the only retrieval states are the ‘ancestors’ or ‘pure’ states
parailel to the encoded patterns in every block together with the completely anti-
parallel states, that means two states by pattern. To discuss the opposite limit € — oo
we should normalize J = =" in equation (2) or equation (3) to keep the interaction
energy finite and then take the limit. In this case the only interaction that survives is
within a single block and the matrix A becomes diagonal, hence the system splits into
l independent neural networks with N, neurons each. The encoded patterns also
split in ! independent cluster patterns, and each cluster state can be either parallel
or antiparallel to its own pattern, then we have in total 2/ possible states for each
global pattern. We conclude that by increasing € and by shortening the interaction
range we favour the appearance of ‘mixed’ states, with the clusters partially parallel
and partially antiparallel to the encoded patterns. These are the ‘descendants’ in
equation (9) with v > 2.
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3. Signal-to-noise analysis

The condition for the stability of a given configuration {o} of the network is that the
neuron o, for the site ¢ € «, be aligned with the local field 4; at the same site. This
gives from equation (3b)

16}
(gihi)ica = o ZAGU ZJUCTJ > 0. (1)
b i

According to our previous results [1, 4] for finite values of p, for each embedded
pattern {£,} the system retrieves a family of patterns {##7}, v =1,2,...,, where

i = vEl i€a (12)

and it is clear that perfect alignment along these patterns will minimize the energy in
equation (8). However, when p is extensive the retrieval of a given pattern may be
hindered by the interference with all the others [7], then we determine the maximum
value of p such that equation (11) holds true for every site when o; = 7" in
equation (12). We obtain, by separating the term with v = p,

/\.Y + z Aahrb >0 (13)
b
where
{4}
ry = Up V) w ZZE grer (14)
JovEN

is a Gaussian noise with zero mean and variance {r}} = al. From equation (13) we
obtain the probability of having the neuron at site ¢ € « aligned with its local field
[7], when the whole network is in the configuration {a} = {##"}

T\ N

o0
oRY =179 f TT \ LY T 25 U -
I"'- =mT j ll (lxbe U \/\’Y + (Zadl) Z AabXb} - [13)
—oo Ty

It is straightforward to perform the integral in cquation (15) by means of the identity:

1 =] d‘f/ dp eir(E— e Aauxe) (16)

with the result
1/2
14+ ® A,Y/ (-znzZA[-;b) (17)
b

P(x) = -j-—.;/ﬂr dze ", (18)

Y
PET =

[ g

where
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In this analysis the critical value of « is obtained by requiring that every site should
be perfectly aligned with its local field, which means from equation (17):

N iy N
H PM = =N 49 ,\,y/ (‘zalz Azb) } ~ 1. (19)
; b

In the limit N — oo, o < 1, we obtain from equation (19) by using the asymptotic
expression for the probability integral [8],

2
SN 1 AY

*r T I NIT, AT,

(20)

which can be written as a ratio:

{
SNt = A2 / (Z ,\'.) @)
szl

where we used the signal-to-noise result for Hopfield’s model, o = (21n N)=-1,

o

4. Mean field theory

Here we study the statistical mechanics of the Hamiltonian in equations (3) by follow-

ing the method of Amit ef a/ [5]. We assume from the start that a finite number s of

patterns condense macroscopically, and these are treated by introducing the thermal

averages of the cluster overlaps in equation (1) as order parameters, while the other

memories v = s+ 1,...,p will form the order parameter in the spin-glass phase.
We use the replica method to write the free energy per site:

. . 1
f=- Nl(.lzlm 1{}TU ,{,iN(,n.[(Z" -1 22

where the replicated partition function is obtained from equation (3a):

AJN .
Z, ={(2") = <Tr{ap} exp |~ ST AL DD seesy > (23)

a,b p=1 =1

and we indicate by a bracket the quenched average over the £s. We also have in
equation (23) the replicated overlaps

y te}
i
SEr — E af 24)

with the replica index p = 1,2,...,n.
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For the ‘condensed’ memories, ;¢ = 1,2,..., s, the standard procedure of Gaus-
sian integration gives {5]
ﬁJN i msf2
Z, = ||A| ( )] fHH(ImW’
a pp
J
x exp (—ﬂ No TapAnXiog E;:I"rng"mfp)
J
X Tr{ap} {exp (—ﬁ INU Ea'bAabEfmlE’;:lmé‘”Sf”) Ap_"’} (25)
where

A= <exp (’Bé‘l’vﬂ S AgEn sgpsg’*’) >{m : (26)

In the derivation of equations (25) and (26) we exploited the statistical indepen-
dence of the &Y for different vs and the average is over only one set {£}} for fixed
v. The evaluation of the quantity A in equation (26) in the thermodynamic limit is
presented in the appendix, with the result that

11 87V .
A:exp §ZE T Z Au.lazAd;-a.a"‘Aakﬂ.lTI«{,'J][Q(I;Q(I;"'QG;;]

k=2 @r..ak
@7
where we introduced the n x »n matrices @, with clements
oo = L S o0 ;
a = Fﬂ : o9 pFE P
Qe =1. 28)

We call qu’ the spin-glass order parameter conjugate to the operator Qr*' in
equation (28) and we introduce it in equation (25) by using the identity:

2 ico i o 32 ' r . 1
II1I [“ﬁgN‘J [T S [ e (B —Qﬁ”)] =19
; LTl

a p#o! e - -

to obtain the result

= C"-/ d'm.f:” H (lw‘{f” (lq’”’ exp (=BNn f{(m,q,r}) (30)
a

pp!

where we have grouped together the multiplicative constants in €/, and we have in
the exponent

f(m,q,r) = )F ZZ Amiimb? + ——[3(? Z Z rh# (;[1“”

wp a,b pEp a

a AJ
T 26n ng( ) ) Z Ay - Aoy,

@k

Trio(4.,9, . 3 N ———1n {'l:,l(r exp Hu.n} Gl
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with

o= _{flﬁ ZZ AgymbeShe 4 E‘i_N‘l Z Z r(!:P'QgP'. (32)

Ko ab a p#p

The »n x n matrix q, in equation (31) has elements g2# for p # p’, ¢£# = 1, which
are the order parameters conjugate to the operators Q,_ in equation (28).

In the thermodynamic limit we evaluate the integral in equation (30) by using the
saddle-point method and to proceed further with the calculation we assume replica
symmetric solutions, i.e.

4 i’
B — = pp —
mhf = m# qtf =g, rhf =r,. (33

Even within the assumption of replica symmetry for the solutions of the saddle-
point equations, we cannot find a closed expression for the free energy in equa-
tion (31) if the q, matrices differ for different clusters. However, we are mainly
interested here in the retrieval of the ‘pure’ memories and its ‘descendants’ given in
equation (12) and discussed in [4]

mh =8, m
(34)

— ¥ o
m, =m, v, y=1,2,...,1

where v7 are the eigenvectors of A in equation (15). The solutions in equation (34)
will minimize the energy according to the criterion in equation (9), and they are
homogeneous in magnitude. Taking into account that g, is the spin-glass order
parameter within the cluster ‘e’ and a positive definite quantity, it is then natural
to think that it will be homogeneous for the retrieval solutions. Hence we restrict
ourselves in the following to saddle-point solutions that satisfy equation (34) together
with:

G, = q T, =T (35)

The assumption of homogeneity does not hold for solutions that mix eigenvectors
with different eigenvalues, like

m, = m, v, iflga<i/2
mazm,y,v:' if {/2<ag!

for A, # A,

It was shown in T that these mixed solutions exist for [ > & and their number
grows exponentially for sufficiently Jarge values of /.

The free energy is obtained by taking the limit n — 0 of f(m,g,r} in equa-
tion (31) at the sadd]e-point in equation (34) and equation (35):

fsp(¥) = 5= 2{3 —m? + = (1-q)mﬁ

_i{ln[la 29| - 5 [1-—%(1—@]-1}

- ljf jz“;e-“' In [2 cosl (%mv + :ﬁ\/_mr‘)l (36)

N|Q

—
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where the eigenvalues A, are given in equation (6) and 3, = [/J) . We have also
used the property that the matrix q has one eigenvalue equal to [1 + (n» ~ 1)¢], and
(n — 1) degencrate eigenvalues equal to (1 — q).

The self-averaging process involved in the derivation of equation (36) when the
cluster size Ny — oo is trivial because we have only one memory present in equa-
tion (34).

The order parameters m., ¢, r in equations (34) and (35) are given by the
solutions of the saddle-point equations:

&0 d.‘_ _.l 2 3
= 27 tanh H—m.f + z8Var kX))
b
r= 38
Z[ﬁa—ﬂ(l—q)]’ 9
/m 42 =3 fann? + zA3/ar (39)
= » 2 anl ——ﬂl o
=) Var A,
4.1. Storage capacity at T = O: upper and lower bounds
By taking the limit 3 — oo in equations (37)-(39) we obtain the equations
m, = O —l—Lm (40)
i v2ar, 3,07

i
= Z[[_‘]5 - C.’,]_2 (41)
6=1

C = lim B(1—q) = | — " L (my) 42
7”;1'11—1-{;;[( )= TOor, oxp _Enr?‘,y 73-: (42)

where the function ®(z) is given in equation (18). We are looking for the values of
o that allow for solutions m., # 0, then equations (40)-(42) can be combined into

-

-1
l l! A l!f) 2 _j-“.‘ v —
= BE-F T e e

where U = m,_ (3, v2ar)™ 1. The critical value of the storage capacity o, is deter-

mined from the condition that for o > «f there is no possible retrieval of the

descendant in equation (34), then «f is given by the maximum value of the func-
tion at the right-hand side of equation (43). From equation (7) we can derive the
inequality:

-i—ltll ) 2 ‘I’(U) > ——UF*W
é

7= (44)
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and it [ollows from equation (44) that «§ in equation (43} has the lower and upper
bounds

(,\HZAE) max{H )} € 2al < max{Hy;} (45)
6

where we defined
(I) D) 2
_ (U) & it

The equality in equation (45) only holds in the Hopfield limit { = 1 where it
coincides with the result in [5]

2ap = max{H,}. 47
Equations (43} and (47) can be combined as follows.

N o
N

/4N
A

|

=
rlin

2
P
)

c
i

1 £ AON
1 - ("EO)

where we used equation (21) to prove that the ratio of the critical storage capacities
calculated by the signal-to-noise method gives a lower bound of of/of. Similar
bounds cannot be derived for the ‘descendants’ with 2 < v < { because (A, /A;) < 1
for § < ~ and equation (44) no longer holds, but the numerical results discussed
later indicate that af; > af > af > -+

We present numerical results for the critical storage capacities as a function of
the parameter ¢ in equation (6) for the two cases [ = 2 and { = &.

0.16|-

F Lal
olzt | b
¢)
e (d)
CO0BI-
014+
000 \ | \ | . ] 1 ! \ J
00 10 20 30 40 50

u

Figure 1. Plot of x;(U/) in equation (43} for two clusters and different values of e.
The index 4 = 1 corresponds to the ‘ancestor’. (@), (b), (¢) and (d) correspond to
e=0.1,1.6,3.1,4.6.
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In the case [ = 2 the system is divided into wo clusters and we have from
equation (6)

A =24+ ¢ Ay = e (49)

The function on the right-hand side of equation (43} is plotted in figure 1 for
4 = 1 and in figure 2 for v = 2, for several values of . The function in figure 1
has a single maximum and the determination of af is straightforward. The function
in figure 2, however, presents two maxima and in order to decide which one deter-
mines of we have to Jook at the stability conditions. The non-vanishing solution of
equation (40) is stable if the inequality

1
1= 50y >0 0

holds at T' = 0, where (', is given in equation (42), then equation (50) can also be
written as

2 2 ALl
2 U Y
—e — —. 51
7= <XT e1)
Now, the two maxima in figure 2 are separated by a minimum at {/* such that
Az Py _ 2 e
XU S 52)

while for all I/ > {/* the inequality in equation (51) will hold. We conclude that of
is determined by the maximum valuc of the function that occurs for 17 > U*. We
show in figure 3 the values for af(¢) and a(¢) when ! = 2, and a similar analysis
was performed for ! = & with the results displayed in figurc 4.

Q05

00 ¢ 20 30 40 50

Figure 2 Plot of x2({/) in equation (43} for two clusters and different values of ¢, The
index 4 = 2 vorresponds to the “descendant’. (@), (b). (c)}, () and (¢} correspond to
€=0.1,0.6,1.6,3.1,4.0,
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it is interesting to compare oufr results with those obtained in the model of
Feigelman and loffe [9]. They considered a learning algorithm that stores a ‘basic’
pattern £; together with K ‘satellites’ through the correlated images:

€7 = g,(1 -2 (53)

where the 47, p = 1,...,K are also random variables. Equation (53) should
be compared with the expression for the patterns stored in our model given in
equation (12), with the conclusion that the main difference between both models
is that our ‘satellite’ or ‘descendant’ variables v] = v if 7 € «, are not random
but determined by the eigenvectors in equation (6). In their case the number K
of ‘satellites’ is also extensive, while we have a finite number of descendants and an
extensive number of basic patterns or ‘ancestors’. Some results are also analogous
to those obtained by us in I, as the existence of a second-order tramsition for the
basic pattern and a first-order transition at lower temperature for the satellites. Their
phase diagram, however, is different from ours as discussed later.

00 e . S
00 10 20 30 20 50 60
£

Figure 3. Plot of the critical storage pacity ratios of () /o (full curve) and the
correspanding signal-lo-hoise quantity a3 (¢)/a§, (broken curve) for two clusters: ()
4 =1, ancestor; and (b) ~+ = 2, descendant,

4.2, Phase diagram in the o=T planc

We recall first the results on the « = 0 line that were derived in I: for a number
[ = 27 of clusters and coming (rom high temperatures there is first a second-order
transition at the inverse temperature 3, = {/J A, where the ‘pure’ pattern or ‘ances-
tor’ in equation (34) orders continuously:

6=
mhk =46,,m,

3 1/2
N, = m,; (?';— - l) .
1

For lower temperatures each group of ‘ descendants’ in equation (6) with eigenvalue
’\"r’ 2°=2 41 € v €21 orders at [ = 37 > /3, with a discontinuity m} # 0 in the
order parameter.
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Figure 4. Plot of the critical storage capacity ratios of (¢)/af (full curve) and the
corresponding signal-to-noise quantity o3F(¢) /o (broken curve) for eight clusters.
(@), (&), (c} and () correspond 0 v = 1,2,3,4, with X > A2 > Az > Ay, The index
v = 1 corresponds 1o the ancestor.

For « finite and high temperatures we only have the paramagnetic solutien m, =
0, g = 0 of the saddle-point cquations (37)~{39). By lowering the temperature we hit
first a continuous transition to a pure spin—glass phase with ., = 0. The transition
temperature is found by expanding equation (38) and (39) for small vaiues of ¢ and
is the solution of the equation:

1 _—[8 ] .
~ = ; [ 5 ] B < By 54

where the last condition is dictated by stability. For « — 0 we obtain the solution:

Bo ~ B (1 = V&) (55)

similar to [4].

To facilitate the comparison with Amit et @/ we use here the same notation as in
[5] to describe the numerical solution of equations (37)-(39) for the particular case
{ = 2, when we have only the ‘ancestor’ (v = 1) and one ‘descendant’ (v = 2). On
lowering the temperature and coming from the spin-glass phase one reaches the line
Tﬂ)(a) at which the ‘ancestor’ orders with a discontinuity +n, # 0. This transition
becomes continuous only at the T-axis. In this rcgion the retrieval solution is locally
stable but the free energy fyp(1) calculated from equation (36) is higher than the
free energy fsp(¥G) for the spin-glass solution. The linc Ti (we) intersects the
cv-axis at the critical «l. From equation (48) we obtain the lower bounds 0.110, 0.093
and 0.084 for o} when )\_/)\ equals 0.5, 0.7 and (.8, respectively, what is consistent
with the numerical results in ligurcs 5 6and 7.

There exists a second line T () < T4 () at which fu. (1) = fup(SG) while

for T < TiM( ) we have fep(1) < fyp(S€) and the retrieval phase for the ancestor
is a global minimum. Up until now the phase dlag,ram looks the same as in [5), but

for still lower temperatures one hits a third line T,E1 () at which the ‘descendant’
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Figure 5. Plot of critical emperatures as a function of ¢ for two dusters and € == 2.
Te is the critical temperature of the spin—glass phase. For T} (o) < T < Tyy(e)
the ancestar {~ = 1) orders, but it becomes a global minimum for T < T} (). For
T < TZ () the descendant {y = 2} orders but its free energy is always higher than
the spin—glass phase. We fixed the scale 2/JA, = 1.
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Figure 6. Same as in figure 5 for € = 4.6. We can see the appearance of a fourth
line T2(a) that was not present in figure 5. For T < T2{«) the [ree energy for the
descendant is below the [ree energy for (he spin—glass phase.

solution with ~ = 2 in equations (37)~(39) orders discontinuously with m, # 0.
Below this line the new solution is locally stable with fsp(2)) fop(5G)) fep(1), and
the intersection of Tl&f’(n) with the q-axis determines the value o

The existence of a fourth line 752'(), such tat for 7 < T () one has
fsp(SGQ) > fep(2) > fgp(1), depends on the relative value AqfA,. From the
numerical results in figures 5, 6 and 7 we conclude that this phase docs not exist for
A,/ A; € 0.6 or € < 3. This is consistent with the discussion at the end of section 2,

where we showed that the existence of the ‘descendants’ is favoured by large values
of .
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Figure 7. Same as in figure 6 for € = 8.
5. Conclusions

We have presented a detailed analysis of the retrieval and storage properties of a
model for neural networks introduced previously by us where the neurons, and not
the patterns, are organized in hierarchical clusters [1, 4]. Qur results indicate that the
space organization of the neurons induces an organization of the retrieved memories,
as for each embedded memory or ‘ancestor’ the system is able to retrieve a family
of “descendants’ that differ from each other and from the ancestor in the sign of the
cluster overlaps.

Although reminiscent of cluster models discussed previously by other authors 3],
the model studied here presents the great advantage of its tractability, that allows for
a detailed investigation of its efliciency for retrieving and storing information.

Understanding the properties of neural nctwork models with modulated or re-
stricted range connections is very important for optimizing the hardware realization
of attractor neural networks. These realizations suffer from severe problems, unless
the assumption of full-range connectivity is broken. On the other hand, strictly short-
range networks arc biologically unrcalistic. The consideration of this problem led
Coolen {10] and Noest [11] to study models of neural networks with spatial structure
by means of stochastic equations. Although their method is different from ours, they
also describe the evolution of the system by using cluster overlaps similar to our
equation (1).

In [11] it is pointed out that the occurrence of domains is the distinguishing
feature of models with restricted range connections. In an analogous way we show in
the present work that the retrieval of ‘descendants’ with mixed alignments in different
clusters originates in the modulation of the interaction, as was discussed at the end
of section 2.
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Appendix

Here we present a derivation of equation (27) in the text. We start by writing from

equation (26)
A= <ex1) { N STy }) (AD)
#i {&)

where IV = [N, and we have from equation (24)

Tt.jzAﬂchrfcrf' ifica,jeb
F4
orifieb,j€a. (A2)

The bracket in equation (A1) indicates an average over the independent variables
&, at each site that take values 1 with equal probability, then we can use the
cumulant expansion to write:

_ k
InA = z -I;l—' (ﬂ) < (le‘ij'szfj) > (A3)
k=1 %

<

where E:jk”_ indicates 3., and {...). means a cumulant average

<Z’Tij£££j> = ZT;'J'(E.'EJ-) =

o i

<(Z'T,-,-£.-£,-) > ZZ 5 Thil€:6560.80) — (6:6,) (&6 (Ad)
if ij

and so on.

The cumulant expansion ensures that only sites in connected clusters will con-
tribute to the sums. In addition, the factor N~* in front of the kth average ensures
that the only non-vanishing contribution in the thermodynamic limit comes from
terms that involve the largest number of independent sums. Then we have from
equation (A3) by taking into account the weights [or each average

3 o
lllA:(“) )IZTU (UV) 3|ZI T T

ijk

N ([3.1) R {z T3 T T + 32"]",-_,-7}1:7";?! + Z'TS‘} +

ijki ijk ij

(A3)
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but the last two sums in equation (AS) are O(N?) and O(N?) respectively, and they
can be neglected. By continuing this process it can be seen that for every order in
perturbation theory there corresponds one dominant contribution and one obtains

lnA:E;)E (m) E 7}1;27152[3"'71{;‘{1' (A6)

i1fg..dk

In the thermodynamic limit one may consider unrestricted sums in equation (A6),
which by using equation (A2) may be rewritten as

I {ai} t {as} RN

Z 11!2 lgt; . 1,‘:. Z Z Z Z Z Z Aa;a; azas " " ‘Aakal

f112...0 ay iy ag iz [ YO T

Z cr cr crpgap’...a-p“a-p* (A7)

1 [3)
4 ¥ 220

and the result in equation (27) with the definition in equation (28) is obtained by
introducing equation {A7) into equation (AG).
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