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AbsIracL We perform a detailed investigation of the storage pmpenia  of a model for 
neural networks that exhibits the same organization into clusters as Dyson's hierarchical 
model for fermmagnetism, combined with Hebb's learning algorithm for an extensive 
number of stored patterns p = oN, where N is the size of the network. In a previous 
publication we presented results for the retrieval pmpenies of the model in the case 
of finite pI showing that together with the original stored pattern or 'ancestor' the 
system also retrieves a hierarchy a t  'descendants'. Here we first perform a signal-to- 

its 'descendants' that are below the Hopfield value. Aftemanis we apply the statistical 
mechanics formulation of Amil, Gutfreund and Sompalins!q, to obtain also in this case 
a wecession of critical storage capacities that are below the corresponding value for 
Hopfield's model. In both case% we consider the ratio of the critical storage capacity 
for the 'ancestor' to the Same quantity as evaluated in Hapfield's model, and we prove 
rigorously that the signal-to-noise method provides 8 lower bound for this ratio, that i s  
bounded from above by unity. We present the phase diagram in the o-T plane for 
the panicular case of two clusters and one descendant. We observe the existence of 
two lines T:(o) < T L ( o )  such that at T = T' CI the 'ancestor' orders continuously 
but for T:(a) < T < T&(o) the global minimum is still given by the spin-glass 
phase, while for T < T: (a) the free energy of the retrieved ancestor becomes a global 
minimum, just as in Hopfield's model. A new feature of the model studied here is the 
existence of a third line 7h2, (0)  < T:(a) such that at T = T ~ ( o )  the 'descendant' 
orders discontinuously. The existence of a fourth line T:(o) < T&(a) depends on the 
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1. Introduction 

In a previous publication [l] we presented a neural network model where the neurons, 
and not the patterns, were grouped into hierarchical clusters as in Dyson's model [Z] 
for ferromagnetism, only the ferromagnetic interactions were here replaced by Hebb's 
learning algorithm. One interesting feature of this model is that, although it bears 
some resemblance to Dotsenko's cluster model [3], it is more tractable and it allows 
detailed mathematical investigations. The retrieval properties for a finite number of 
stored patterns were discussed in a second paper [4] (in the following, referred to as 
I), where we showed that if the number of clusters 1 = 2' remains small, T < 3, there 
is perfect retrieval of a family of 'descendants' together with the originally embedded 
pattern or 'ancestor'. The descendants differ from the ancestor in the relative sign 
of the cluster overlaps, and they are local minima of the energy while the ancestor 
always remains as a global minimum. Introducing as usual a 'temperature' T as a 
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measure of synaptic noise we obtain that, for a given pattern, the ancestor and its 
descendants order succesively hy reducing T. There is a series of critical temperatures 
T; > T; > . . . > 5”; at which order first the ‘ancestor’ or original pattern and then 
the successive ‘descendants’ obtained by increasing the number of partitions in clusters 
with different signs for the overlaps. Although the ancestor pairs through a second- 
order transition, the other transitions are discontinuous. At and below the ordering 
temperature the ancestor solution of the saddle-point equations remains as a global 
minimum and the descendants as local minima of the free energy. The importance 
of these local minima is that they may act as attractors in a dynamical relaxation 
process. When the number of clusters 1 increases ‘blurred’ solutions start to appear 
that mix the descendants of a given ancestor and may hinder perfect retrieval, the 
number of these spurious solutions increasing exponentially 141 with large values of 1. 

In the present paper we present a detailed study of the storage capacity of the 
model which has an extensive number of stored patterns p = aN,  where N is the 
size of the network. Although all theories coincide in predicting a critical value aC 
for the storage capacity such that for n > a, there is no possihle retrieval, the actual 
value obtained for nc varies according to the different criteria used in the definition 
of good retrieval. In the signal-to-noise analysis if we make the strong requirement 
of perfect retrieval at every site, thcn mc k itself a decreasing function of N. By 
using statistical methods [5] we make instead the weaker requirement of having good 
retrieval on average. In the case of Hopfield’s model the signal-to-noise analysis gives 

ab = 0.14, which coincides with the estimates obtained previously by Hopfield in 
numerical simulations. 

This paper is organized as follows. In section 2 we describe the model and 
in section 3 we perform a signal-to-noise analysis, obtaining a succession of critical 
storage capacities ar > a?” > n2y4  > . . . > a:b4 Cor the originai pattern ana 
its ‘descendants’, where the first inequality indicates that all the critical capacities 
are below the Hopfield value. In section 4 we perform an analysis of the storage 
capacity by using the statistical mechanics techniques introduced by h i t  cf al [SI. 
We also obtain a succession of critical values rrf, > n; > a; > -., such that for 
a > a; there is no retrieval of  thc y dcsccndant. Wc showed rigorously for the 
original pattern (y = I )  that the ratio of critical capacities oYN/nSHN calculated by 
the signal-to-noise method is a lower bound Cor a;/nh, the same quantity calculated 
by statistical mechanics methods. A complete phase diagram in the 0-T plane is also 
presented in this section, where we show for the particular case of two clusters that 
there exist lines T$(a)  and T2(m) such that for a given n and T < T$(a)  orders 
the y descendant, while for T < T2(n )  < T$(n)  the free energy of the retrieved 
descex!ast b k~wcr !his the free cscrG8 ol the spi.-g!ass phase.. T?.e n!merb! %!%S 

obtained for n; agree with the rigorous bounds previously calculated. Section 5 is 
dedicated to conclusions and wc comment on the relation with stochastic models with 
modulated or restricted interaction range. In the appendix we use the linked cluster 
theorem to evaluate the average values over the random embedded patterns. 
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,SN - - (2111 N ) - l  while the work of h i t ,  Gutfreund and Sompolinsky [5] gives 

2. The model 

We consider a network of N neurons represented by king spin variables U; = 
*l, i = 1, .  . . , N, where there are stored p patterns {(f’), /L = I,. . . , p ,  with 
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the independent landom mriables Ef' taking values +1 with equal probability. The 
hierarchical clusters are organized as follows [I, 41: the N neurons are partitioned in 
1 = Zr clusters of No sites each, where I .  is an integer and we introduce the cluster 
overlaps 

(1) 

where the sum in equation (1) indicates that the index i runs over the sites in cluster 
{ a } .  lb this partition we associate an interaction energy: 

where c is an arbitrary positive coupling. 
At the second level every two consecutive clusters are joined into a larger cluster 

of 2 N o  sites and by continuing this process wc have, at the kth level, Y-' clusters 
with N ,  = sites each. 7b every partition we associate a cluster overlap .S:,(k), 

with coupling strength e r - , .  The total energy is ohtained hy adding the X, from 
k = 0 to k = r. with the result that 

a' = 1,2 , .  . . , y - k  as in equation (I)  and a n  interaction energy H, as in equation (2) 

which can also he written as 

where the Jij are given by Hebh's learning rule: 

The mefficients Aah( l )  are the elements of a 1 x I matrix A that turns out to 
he of ultrametric form. The explicit expression [or A(1)  and the eigenvectors v T ( 1 )  

were discussed in I where we showed the following properties: 
(i) They can he obtained through the recursion relations 

with the corresponding eigenvalues 

XI([) = I + €AI(I /2)  

X 2 ( 1 )  = F X , ( 1 / 2 )  

,,-, ( I ) = X 2 , , ( I ) = t X , , ( 1 / ~ )  v2". 
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It follows that I J ~  = fl. 

groups with decreasing eigenvalues: 
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(ii) Except for ~ ‘ ( 1 )  and ~ ~ ( 1 ) .  all the other eigenvectors fall into degenerate 

A, > A, > A, = A, > ’ ’ ’ > A,/,+, = A,/,+, = , ’ ,  = A,. (7) 

We may write the energy in an alternative way 

and it follows that, for each embedded pattern, the energy function will be minimized 
by 1 configurations of overlaps that satisfy: 

sgn(.5’f) = 71; y = I , 2 , .  . . . 1 .  (9) 

It is interesting to point out that in the form of equation (8) the energy function is 
reminiscent of some ‘palimpsestic’ schemes formulated to store working or short-term 
memories (61. The learning rule of [6] is obtained from equation (8) if we make the 
correspondence 

and let A, be some positive, integrable function of y that would play the role of a 
‘time’. The analogy stops there, hut  some of our equations can he compared with 
those in [6] with the correspondence in equation (10). 

1 ,  N o  = 2 ,  P = 
l n ( N ) / l n ( 2 )  and it simulates decaying power law interactions li - j l - ( I t u ) ,  with 
the range parameter U = I I I ( F ) / ~ I I ( ~ ) ,  then the limit of long- (short-)-range interac- 
tions corresponds to t + 0 ( t  - m). We analyse these two limits. 

When E = 0 the present model reduces to Hopfield’s model with long-range, 
uniform interactions. In this limit only the largest eigenvalue A ,  = 1 differs from 
zero in equation (6) and the only retrieval states are the ‘ancestors’ or ‘pure’ states 
parallel to the encoded patterns in every block together with the completely anti- 
parallel states, that means two statcs hy pattcrn. TI discuss the opposite limit t + 00 

we should normalize .I = e-l’ in equation (2) o r  equation (3) to keep the interaction 
energy finite and then take the limit. In this case the only interaction that survives is 
within a single block and the matrix A becomes diagonal, hence the system splits into 
I independent neural networks with No neurons each. The encoded patterns also 
split in 1 independent cluster patterns, and each cluster state can be either parallel 
or antiparallel to its own pattern, then we have in total 2’ possihle states for each 
global pattern. We conclude that by increasing F and by shortening the interaction 
range we favour the appearance of ‘miwed’ states, with the clusters partially parallel 
and partially antiparallel to the encoded patterns. These are the ‘descendants’ in 
equation (9) with y 2 2. 

Dyson’s hierarchical model is obtained by writing Ji, 
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3. Signal-to-noise analysis 

The  condition for the stability of a given configuration { U )  of the network is that the 
neuron ui. for the site i E a, he aligned with the local field hi at the same site. This 
gives from equation (3) 

161 
( ~ ~ h ~ ) ~ ~ ~  = u i x A , , x J i j m j  > 0. (1 1) 

I J 

According to our previous results [1, 41 for finite values of p q  for each embedded 
the system retrieves a family of patterns {1p7), y = 1 , 2 , .  . . , I ,  where pattern 

i E I1 (12) P7 - 7 P 
vi = V a < i  

and it is clear that perfect alignment along these patterns will minimize the energy in 
equation (8). However, when p is extensive the retrieval of a given pattern may he 
hindered by the interference with all the others [7], then we determine the maximum 
value of p such that equation (11) holds true for every site when mi = vF7 in 
equation (12). We obtain, by separating the term with U = p ,  

where 

( i 

is a Gaussian noise with zero mean and variance (12) = al. From equation (13) we 
obtain the probability of having the neuron at site i E (1 aligned with its local field 
[7], when the whole network is in the configuration { m }  = { T ~ J ' ~ )  

It is straightforward to perform t h e  integral in cquation (15) by means of the identity: 

with the result 

where 
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In this analysis the critical value of n is obtained by requiring that every site should 
he perfectly aligned with its local lield, which means from equation (17): 

In the limit N + m, a << 1, we obtain from equation (19) by using the asymptotic 
expression for the probability integral [SI, 

which can be written as a ratio: 

where we used the signal-to-noise rcsult for Hopfield’s model, nEN = ( 2  111 N ) - I .  

4. Mean field theory 

Here we study the statistical mechanics of the Hamiltonian in equations (3) by follow- 
ing the method of Amit ef a/ [5]. We assume from the start that a finite number s of 
patterns condense macroscopically, and these are treated by introducing the thermal 
averages of the cluster overlaps in equation ( I )  as order parameters, while the other 
memories v = s + I , .  . . , p will form the order parameter in the spin-glass phase. 

We use the replica method to write the free cnergy per site: 

where the replicated partition function is obtained from equation (%): 

and we indicate by a hrackct the quenched avcragc over the (s. We also have in 
equation (23) the replicated ovcrhps 

with the replica index = I , 2 , .  . . , ? I .  
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For the 'condensed' memories, 11 = 1,'1,. , . , .s, the standard procedure of Gaus- 
sian integration gives IS] 

where 

In the derivation of equations (25) and (26)  we exploited the statistical indepen- 
dence of the c; for different us and the average is over only one set (e;} for fixed 
U. The evaluation of the quantity A in equation (26) in the thermodynamic limit is 
presented in the appendix, with the result that 

where we introduced the 7 1  x 11 matrices Q,, with elements 

(.I , , I  
Q:p = -c.:.: P # PI 

I 

y:. = 1. (28) 
We call qp" the spin-glass order parameter conjugate to the operator Qgp' in 

equation (28) and we introduce it in equation (25) by using the identity: 

to obtain the result 

where we have grouped together the multiplicative constants in C',, and we have in 
the exponent 
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The n x n matrix q, in equation (31) has elements q fp ’  for p # p’, q,Pp = 1, which 
are the order parameters conjugate to the operators Q,, in equation (28). 

In the thermodynamic limit we evaluate the integral in equation (30) by using the 
saddle-point method and to proceed further with the calculation we assume replica 
symmetric solutions, Le. 

n a g P  = m: q:P’ = q,, T p ’  = i-a. (33) 

Even within the assumption of replica symmetry for the solutions of the saddle- 
point equations, we cannot find a closed expression for the free energy in equa- 
tion (31) if the q, matrices differ for different clusters. However, we are mainly 
interested here in the retrieval of the ‘pure’ memories and its ‘descendants’ given in 
equation (12) and discussed in [4] 

where U? are the eigenvectors of A in equation (15). The solutions in equation (34) 
d l  minimize the energy according to the criterion in equation (9), and they are 
homogeneous in magnitude. 73king into account that qa is the spin-glass order 
parameter within the cluster ‘a’ and a positive definite quantity, it is then natural 
to think that it will he homogeneous for the retrieval solutions. Hence we restrict 
ourselves in the following to saddle-point solutions that satisfy equation (34) together 
with: 

’ In  = ’I 1’, = 1 ’ .  (35) 

The assumption of homogeneity does not hold for solutions that mix eigenvectors 
with different eigenvalues, like 

T ~ L ~  = 7 1 ~ ~ 7 1 :  if I < ( 1  < 112 

I n ,  = m7, U:‘ if 1 / 2  < I 1  < 1 

for A, # A?,. 

grows exponentially for sulliciently large values of 1. 

tion (31) at the saddle-point in equation (34) and equation (35): 

It was shown in I that these mixed solutions exist for 1 2 X and their number 

The free energy is ohtained by taking the limit n - 0 of f ( ? n , q , ~ )  in equa- 
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where the eigenvalues A, are given in equation (6) and 0, = l / J x , .  We have also 
used the property that the matrix q has one eigenvalue equal to [l + ( n  - 1)q], and 
(n - I )  degenerate eigenvalues equal to ( 1  - q ) .  

The self-averaging process involved in the derivation of equation (36) when the 
cluster size No - m is trivial because we have only one memory present in equa- 
tion (34). 

The order parameters m,, q,  1' in equations (34) and (35) are given by the 
solutions of the saddle-point equations: 

4.1. Slorage capacily at T = 0: upper and lower bounds 

By taking the limit 1.3 - 00 in equations (37)-(39) we obtain the equations 

( 2 )"? ex,, { -~ 1 (;;)Z] - 
C, = l i i i i  /.3( I - q )  = - 

A-N x n l ;  2n7; 

where the function @(a) is given in equation (1X). We are looking for the values of 
a that allow for solutions 1 1 1 ~  # 0,  then equations (40)-(42) can he combined into 

where U = r n 7 ( / . 3 , f i ) - ' .  The critical value of the storage capacity rt; is deter- 
mined from the condition that  for c1 > d, there is no possihle retrieval of the -, 
descendant in equation (34), then n; is given by the maximum value of the func- 
tion at the right-hand side of equation (43). From equation (7) we a n  derive the 
inequality: 
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and it follows from equation (44) that 
bounds 
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in equation (43) has the lower and upper 

where we defined 

The  equality in equation (45) only holds in the Hopfield limit 1 = 1 where it 
coincides with the result in [5] 

2a;i = m a x { H ~ ~ , ) ) .  (47) 

Equations (45) and (47) can be combined as follows. 

(48) 

where we used equation (21) to prove that the ratio of the  critical storage capacities 
calculated by the signal-to-noise method gives a lower bound of nC/ah. Similar 
bounds cannot be derived for the ‘desccndants’ with 2 < y < 1 because ( & / A , )  < 1 
for 6 < y and equation (44) no longer holds, hut the numerical results discussed 
later indicate that ah > a; > a; > . . .. 

We present numerical results for the critical storage capacities as a function of 
the parameter e in equation (6) for the two cases 1 = 2 and 1 = 8. 

Figure 1. Plot of ,y, ( [ J )  in equation (41) for wo clusten and different values of e. 
nit index 7 = 1 corresponds to the ‘ancestnr’. (0). (b),  (c )  and ( d )  correspond to 
r = 0 . 1 , 1 . G , 3 . 1 , 4 . 6 .  
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In the case 1 = 2 the system is divided into two clusters and we have from 
equation (6) 

A , = 2 + c  A , = c .  (49) 

The function on the right-hand side of cquation (43) is plottcd in figure 1 for 
y = 1 and in figure 2 for y = 2 ,  for several values of e .  The function in figure 1 
has a single maximum and the determination of a; is straightfoward. The function 
in figure 2, however, presents two maxima and in order to decide which one  deter- 
mines a; we have to look at the stability conditions. The  non-vanishing solution of 
equation (40) is stable if the inequality 

I 
(50) l - - - C v > O  

f l ! 

holds a t  T = 0, where C, is given in equation (42), then equation (50) can also be 
written as 

Now, the two maxima in figure 2 a re  separated by a minimum a t  (1' such that 

A, @ U .  - 2 -,,, *' _ -  _- 
A ,  U' J;;" 

while for all I 1  > (1' the incqiiality in cquation (51) will hold. We conclude that 0; 

is determined by the maximum v:iIuc of the function that occurs lor  11 > 11'. We 
show in figure 3 thc values for e;(<) and n > ( f )  whcn 1 = 2 ,  and a similar analysis 
was performed for 1 = X with thc results displayed in ligurc 4. 



790 M A  fires Idiari and A Theunrann . 
It is interesting to compare our results with those obtained in the model of 

Feigelman and Ioffe [9]. They considered a learning algorithm that stores a ‘basic’ 
pattern ti together with Ii ‘satellites’ through the correlated images: 

where the pi”, y = 1, .  . . ,IC are also random variables. Equation (53) should 
be compared with the expression for the patterns stored in our model given in 
equation (12), with the conclusion that’the main difference between both models 
is that our ‘satellite’ or ‘descendant’ variables U; = U; if i E a, are not random 
but determined by the eigenvectors in equation (6). In their case the number li 
of ‘satellites’ is also extensive, while we have a finite number of descendants and an 
extensive number of basic patterns o r  ‘ancestors’. Some rcsults are also analogous 
to those obtained by us in I, as the existence of a sewnd-order transition for the 
basic pattern and a first-order transition at lower temperature for the satellites. Their 
phase diagram, however, is different from ours as discussed later. 

Figure 3. Plot of the miticid storage cipncity mtios d , ( c ) / m i l  (full curve) and llie 
corresponding signal-to-noiac quantity ~ 2 , ~ ( e ) / < t ~  (broken cume) [or two dusters: (a) 
y = 1. ancesior; and (h )  y = 2, desceiidimt. 

4.2. Phase diagrani in lhe n-T plane 

We recall first the results on the (1 = 0 line that were derived in I: for a number 
I = 2‘ of clusters and wming from high tcmperatures there is first a second-order 
transition at the inverse temperature 13, = / / , )A ,  where the ’pure’ pattern or ‘ances- 
tor’ in equation (34) orders continuously: 

1 4  = ti,,, 111, 

For lower temperatures each group of ‘ descendants’ in equation (6) with eigenvalue 
A,, 2“-2 + 1 < y < ? * - I  orders at /j = / j ;  > 13, with a discontinuity m: # 0 in the 
order parameter. 
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30 4 0  5 0  6 0  
E 

Figure 4. Plot of tlic miticid slorage o~paci ty  mtios d , ( c ) / m L  (full cuwe) and the 
corresponding signal-lo-noise quantity & , ” ( e ) / o ; ,  (broken a w e )  for eight duslem. 
(a), (b), (c) and ( d )  mrrespoiid to 7 = 1 , Z j  :X,4, with A ,  > A? > A s  > A r .  n e  index 
y = 1 “usponds 1” llle ancest(Ir. 

For e finite and high temperatures we only have the paramagnetic solution 1 1 1 . ~  = 
0, q = 0 of the saddle-point equations (37)-(39). By lowering thc temperature we hit 
first a continuous transition to a pure spin-glass phase with ?i t7  = 0. The transition 
temperature is found by expanding equation (38) and (39) for small values of q and 
is the solution of the equation: 

where the last condition is dictated by stability. For CI -+ 0 we obtain the solution: 

Pc / I  ( I - 6) (55) 

similar to [4]. 
To facilitate the comparison with h i t  et nl we use here the same notation as in 

[5] to describe the numerical solution of equations (37)-(39) for the particular case 
1 = 2, when we have only the  ‘ancestor’ (y = I )  and one ‘descendant’ ( y  = 2 ) .  On 
lowering the temperature and coming from the spin-glass phase one reaches the line 
??$)(a) a t  which the ’ancestor’ orders with a discontinuity l r i l  # 0. This transition 
becomes continuous only a t  the T-axis. In this region the retrieval solution is locally 
stable but the free energy jSp( I )  calculated from equation (36) is higher than the 
free energy fsp(SC:) for the spin-glass Solution. The line ~ ; ; ’ ( c I )  intersects the 
n-axis at the critical n:. From equation (48) we obtain the lower hounds 0.1 10, 0.093 
and 0.084 for (1: when X,/X, equals 0.5, 0.7 and 03,  respectively, what k consistent 
with the numerical results in ligures 5, 6 and 7. 

There exists a second line T;”(m) < 7$) (n )  at which fsp( 1 )  = fsp(,SC:) while 
for T < Ti1)(<?) we have fsp( 1) < fsp( SC:) and the retrieval phase for the ancestor 
is a global minimum. Up until now the phase diagram looks the same as in [5] ,  but 
for still lower temperatures one hits a third line T,$)(e) at which the ‘descendant’ 
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a 
Figure 5. PI01 nf clitical tcmpemtures ;is a funclion o l  o for two cluslen and L = 2. 
Tc is the crilicill ampemlurc  of ll,c spin-gliw phase. For T:(n) < T < T$(n)  
the ancestor (y = 1) o r d m ,  hu1 it Lxcomer a global minimum for T < T > ( m ) .  For 
T < PM(*) lhr descend;mt ( 7  = 2 )  ordcn but  its free energy is always higher than 
Ihe spin-glns pliasr. We f x d  tlic scciile Y / J X l  = 1. 

a 
Figure 6. Same AS in ligure 5 lor c x 4.ti.  We n n  sese the appearance of a fourth 
linc T:(n) t h 1  was not prracn~ in Ogux 5. For T < r2(w) the lree energy for the 
dcrend;ini is hdow the lrec energy h r  ilie q i - g l i s s  phsr. 

solution with y z 2 in equations (37)-(39) orders discontinuously with m2 # 0. 
Below this line the new solution b locally stahle with fssr(2))fsP(-'c"))fsp(l), and 
the intersection of Ti;'( (I) with thc (\-axis dctcrmines the Y J ~ U ~  0:. 

The  existence of a fourth linc ' /$?'(n), such that Cor 7' < Ti2) (<?)  one  has 
fsp(SC.) > fsp(,2) > f s , , ( l ) ,  depends o n  thc relative value &/A , .  From the 
numerical results tn figures 5,  6 and 7 we conclude tha t  this phase docs not exist for 
& / A ,  < 0.6 or t < :1. This is consistent with the discussion at the end of section 2, 
where we showed that the existence of the 'descendants' is hvourcd by large d U e S  
of e .  
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_L 

0 IO 
a 

0 I4 
a 

Figure 7. Same as in figure 6 for < = 8. 

5. Conclusions 

We have presented a detailed analysis of the retrieval and storage properties of a 
model for neural networks introduced previously by us where the neurons, and not 
the patterns, are organized in hierarchical clusters [ I ,  41. Our results indicate that the 
space organization of the neurons induces an organization of the retrieved memories, 
as for each embedded memory or 'ancestor' the system is able to retrieve a family 
of 'descendants' that differ from each other and from the ancestor in the sign of the 
cluster overlaps. 

Although reminiscent of cluster models discussed previously by other authors [3], 
the model studied here presents the great advantage of its tractability, that  allows for 
a detailed investigation of its eniciency for retrieving and storing information. 

Understanding the properties of neural network models with modulated or re- 
stricted range connections is very important for optimizing the hardware realization 
of attractor neural networks. These realimtions suffer from severe problems, unless 
the assumption of full-range connectivity is hrokcn. On the other hand, strictly short- 
range networks are biologically unrealistic. The consideration of this prohlem led 
Coolen [IO] and Noest [I  I] to study models of neural nctworks with spatial structure 
by means of stochastic equations. Although their method is different from ours, they 
also describe the evolution of thc system by using clustcr overlaps similar to our 
equation (1). 

in [iij it is pointed out that the Occurrence of domains is the distinguishing 
feature of models with restricted range connections. In an analogous way we show in 
the present work that the retrieval of 'descendants' with mixed alignments in different 
clusters originates in the modulation of the interaction, as was discus'ied at the  end 
of section 2 
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Appendix 

Here we present a derivation of equation (27) in the text. We start by writing from 
equation (26) 

M A  fires Idiart and A Ttieutnann 

where N = l N ,  and we have from equation (24) 

or if i E 6 , j  E a .  

The bracket in equation (Al)  indicatcs an average over the independent variables 
ti a t  each site that take values f l  with equal prohahility, then we can use the 
cumulant expansion to write: 

where xijk.,. indicates Ci+j+k, , ,  and (. . .), means a cumulant average 

and so on. 
The  cumulant expansion ensures that only sites in connected clusters will con- 

tribute to the sums. In addition, the factor N - k  in front of the kth average ensures 
that the only non-vanishing contrihution in the thermodynamic limit comes from 
terms that involve the largest number of independent sums. Then we have from 
equation (M) hy taking into account thc weights lor each average 
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but the last two sums in equation (AS) are  O( N 3 )  and O( N z )  respectively, and they 
can be neglected. By continuing this process it a n  he seen that for every order in 
perturbation theory there corresponds one dominant contribution and one obtains 

In the thermodynamic limit one  may consider unrestricted sums in equation (A6), 
which by using equation (A2) may be rewritten as 

I { a 1 )  I {a2) I {ah) 

'TXi*Ti*i*''.Tiki, =cccc...cc AaLa>Aa2a$''.Aak*l 
R I  i l  e, i 2  a i  ik 

. .  . 
,112 ... 1 1  

and the result in equation (27) with the delinition in equation (28) is obtained by 
introducing equation (A7) into equation (A6). 
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